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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-457

STRUCTURAL CONSIDERATIONS OF INFLATABLE REENTRY VEHICLES

By Robert W. Leonard, George W. Brooks,

and Harvey G. McComb_ Jr.

SUMMARY

The state of the design art for inflated structures applicable to

reentry vehicles is discussed. Included are material properties, cal-

culations of buckling and collapse loads_ and calculations of deflec-

tions and vibration frequencies. A new theory for the analysis of

inflated plates is presented and compared with experiment.

INTRODUCTION

One vehicle which has been proposed as a possible device for

achieving manned reentry from orbital flight is the inflatable reentry

glider. In this paper some of the problems and properties which must

be considered in the design of vehicles of this type are discussed.

It is important to note the state of material availability for

application to inflatable reentry vehicles. The expected maximum

temperatures on inflated portions of typical proposed vehicles range

as high as 1,500 ° F. This relatively severe temperature environ-

ment indicates that an inflatable reentry glider probably must be

constructed of woven fabric of high-temperature-resistant metal wire.

This fabric must, in turn, be sealed against loss of air pressure by a

suitable temperature-resistant coating. At the present time such mate-
rials are not available as "off-the-shelf" items. Additional work is

needed to improve the quality of woven fabric, to perfect satisfactory

joining techniques, and, especially, to improve the properties of avail-

able high-temperature-resistant coatings. In spite of these deficiencies_

material development for inflatable reentry vehicles is well advanced

and this state has been achieved through a modest effort. Thus, with

continued or accelerated effort, materials suitable for the construc-

tion of an inflatable reentry glider can probably be available in the
near future.
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SYMBOLS

A

c

d

F

g

h

I

Z

M

P

q

%[

T

cross-sectional area of inflated structure

distance from beam neutral axis to outer fiber

distance from cross-sectional center of pressure to outer

fiber

force

structural damping coefficient

depth of airmat plate

beam cross-sectional moment of inertia

length of beam

moment

internal pressure

lateral load intensity

lateral deflection of airmat plate

angles of rotation of airmat drop cords

normal stress

shear stress

I
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PROPERTIES OF INFLATABLE STRUCTURES

Consider now some of the questions of structural configuration and

properties which would enter into the design of inflated reentry vehi-

cles. In figure i is shown a typical example of such a vehicle. Note

that two basic types of structural elements _re represented: the inflated

circular cylinder which typifies the fuselag_ construction and the

inflated plate which is used for the wings, _ins, and control surfaces.

Two possible ways of constructing such pneumEtic plates are shown in

figure i. At the lower center is shown a plate consisting of an array

of tubes, a sort of inflatable equivalent to multiweb construction.
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At the right is shown a different arrangement, called "airmat," which

was developed by the Goodyear Aircraft Corporation. Airmat consists of

two woven covers which are held a fixed distance apart by a regular

array of fibers called "drop cords." This arrangement permits an inflat-

able wing to be tapered in any desired manner. Furthermore, from the

standpoint of its strength in bending, airmat is more efficient than

the tubular configuration or any similar configuration of the same depth.

o
co
o
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Buckling and Collapse Analysis of Inflated Structures

The higher efficiency of airmat plates has been established by

simple buckling and collapse analyses. Such analyses are in common use

(for example, see ref. i) and can apparently be applied to any type of

inflated structure. The nature and the accuracy of these analyses are

illustrated in figure 2 for the case of a load F applied at the tip

of an inflated cylindrical cantilever beam of length _. The ordinate

of the plot is bending moment at the root, the applied load times the

length; the abscissa is the internal pressure in the cylinder. Two

calculated curves are shown. The lower curve gives the root bending

moment where local buckles, or wrinkles_ first appear at the upper

extreme fiber. As indicated at the right in figure 2, this is calcu-

lated simply as the moment for which the elementary compressive bending

stress Mc/l Just cancels the tension stress due to pressure. Since

this region of zero stress is very localized, the cylinder can carry

still more load before collapsing. As the load is increased, the wrinkle

progresses around the cross section. Collapse occurs when the wrinkle

has progressed all the way to the lower extreme fibers. At this instant,

the root cross section takes on the characteristics of a plastic hinge

and approximations to the collapse load can be obtained by an applica-

tion of the theorems of plastic limit analysis. A simple equivalent

way of arriving at an approximate collapse load is as follows. Assume

that, at collapse, only the extreme lower fibers carry tension to bal-

ance the pressure inside the cylinder as indicated at the lower right

in figure 2; then_ the resisting "plastic hinge" moment is the resultant

pressure force pA times the distance d from these extreme fibers

to the line of action of the resultant pressure force. Since the cylin-

der is in equilibrium 3 this must also be the moment of the applied load

at the instant of collapse. The upper curve on the plot in figure 2

has been calculated in this way.

The accuracy of these simple calculations is shown by the experi-

mental points. These data were obtained from cylinders of two different

materials, cotton cloth coated with neoprene and fiber-glass cloth

coated with latex. Since the cantilever beam is a statically deter-

minant configuration, the buckling and collapse moments do not depend

on material properties. Note that the collapse load for a circular

cylinder is about twice the buckling load.



Consider now the application of the simple collapse analysis to the
60° inflated delta wing shownin figure 3. _is wing is an example of
the tubular construction shownin figure i, with the webs parallel to
the root. Again, a concentrated load is applied at the tip. As a
result of the tubular construction, collapse occurs simultaneously along
each of the webs and at the root according to both experiment and simple
theory. The simple criterion for collapse is applied exactly as before,
and the resulting momentat the root is plotted in figure 3 against
internal pressure. No buckling curve is shownbecause this configura-
tion is such that there is no discernible difference between Duckling
and collapse. The experimental points were obtained from a small model
madeof cotton cloth coated with neoprene. The agreement of these
points with the simple collapse theory is seen to be quite good.

The application of the theorems of plastic limit analysis to the
collapse of inflated structures leads to the conclusion that this simple
theory gives an upper bound on the collapse load. The results shownin
figures 2 and 3 indicate that, in manypractical cases, this upper bound
is quite close to the true collapse load. Thus, the simple collapse
criterion appears to be a very useful tool for rough design calculations.
It maybe applied to any inflated structure, including airmat wing
structures.

P
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Deflection Analysis of Inflated Wings

The foregoing results indicate that the determination of collapse

loads may be a relatively easy task for the designer of an inflated

reentry vehicle. However, the determination of the deformations of the

vehicle or the performance of an aeroelastic analysis is quite another

matter. Simple beam theories are not adequale for these tasks and mate-

rial properties must be taken into account; hence, more comprehensive

structural theories are needed. Such a theory has been developed for

application to plates of the airmat type.

The new airmat-plate theory is a linear "small-deflection" theory

based on the following assumptions. It is a_sumed that the woven mate-

rial is elastic but orthotropic, that the pressure inside the airmat

does not vary with deformation, and that the drop cords are inexten-

sional but they need not remain perpendicular' to the covers. (See

fig. 4.) This means that transverse shear dc,formation of the airmat

plate is permitted. The theory can be expressed in terms of the deflec-

tion w (see fig. 4) and t_o drop-cord angl(s _ and _. The angle

is shown in figure 4 and _ is a similar angle in a plane normal to

the figure.

Actually, the airmat-plate theory turns out to be nothing more

than a special form of the well-known theory for plates with transverse
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shear flexibility. In this case, transverse shear stiffness is the prod-

uct of the internal pressure p and the depth h of the airmat. In

many practical cases this transverse shear stiffness can be expected to

be very low so that much of the deflection of the plate is shear deflec-

tion not involving deformation of the material in the covers. The theory

has been written for the case of constant depth of the airmat plate and

inertia forces have been included. These equations are presented in the

appendix. Such factors as aerodynamic forces, nonuniform temperature
distributions, and depth variations can be inserted if desired.

Some idea of the usefulness of airmat-plate theory is afforded by

the comparison with experiment shown in figure 5. A square airmat plate,

made of nylon fabric coated with neoprene, was mounted in such a way as

to simulate simple support boundary conditions all around. The plate

was 18 inches wide with a depth h of 1.12_5 inches. A uniform external

loading q was applied to the surface of the plate at different values

of the internal pressure p. Resulting values of the center deflection

w, in terms of the depth h of the plate, are plotted in figure 5

against the load q. Data points are shown for three values of internal

pressure: 5, 9, and 14 pounds per square inch in excess of the external

pressure.

Effective orthotropic elastic constants for the fabric material of

the test specimen were obtained from tests of cylinders made from the same

material. These constants were used in the new airmat-plate theory

(eqs. (AI2) to (AI4) in the appendix) to calculate deflections of the plate.

The calculated values of center deflection, corresponding to each experi-

mental value of internal pressure, are shown by the lines in figure 5.

Consider, for a moment, the upper, solid line which gives calculated

deflections corresponding to the lowest internal pressure shown on the

plot. The importance of transverse shear deformation is shown at the

right. It is seen that, for this pressure, approximately three-quarters

of the calculated deflection is due to shear alone. Thus, a simple

bending analysis which neglects transverse shear flexibility could not

be expected to yield even approximately accurate deflections.

In general, the values of deflection calculated with airmat-plate

theory are higher than the experimental values. The largest discrepancy

is approximately 17 percent at the lowest internal pressure and is

believed to be largely due to a peculiarity of the test specimen. The

plate specimen used was rectrained from shear deformation near its edges

by heavy reinforcement which would not be typical of inflated-wing con-

struction. The theory, on the other hamd, assumes the plate to be

flexible in shear over its whole width_ and_ hence_ can be expected to

yield higher deflections especially at the low pressure where shear

flexibility is so important. At the highest pressure (the lowest curve),

where shear deformation is somewhat less important, the agreement is
seen to be quite good.
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Material Properties of Fabrics

It is of interest to note in figure 5 that, at each pressure, the

experimental points lie approximately on a straight line. This indicates

that the behavior of the experimental plate specimen was indeed very

nearly linear. Thus, the fabric material of the specimen appears to

exhibit linear stress-strain behavior for the range of stress imposed.

In spite of this local linear behavior, the stress-strain curve is, on

the whole, typically nonlinear. This point _s illustrated by the typical
stress-strain curves for fabric which are shown in figures 6 and 7.

A single layer of simply woven fabric such as that shown in fig-

ure 6 has two sets of perpendicular fibers which are commonly called

the warp and the fill fibers. A sheet of such material is thus ortho-

tropic with axes of symmetry in these two perpendicular directions. In

the plot in figure 6 is shown a typical strew.s-strain curve for such a

fabric in a state of biaxial tension with st_'esses _warp and _fill

in the warp and fill directions. The warp s_ress is plotted against

warp strain for a constant value of the fill stress. Other values

of fill stress correspond to different curves as illustrated by the

dashed curve for zero fill stress. The initial, curved portion of

the stress-strain curve corresponds to the s%raightening of the warp

fibers and bending of the fill fibers as the warp stress is applied;

hence, material behavior in this range depends strongly on the tightness
of the weave and on the fill stress maintained in the other direction.

After this process of straightening and bending of the fibers is nearly

complete, the stress-strain behavior depends more on the properties of

the material. This curve was based on a lin._arly elastic fiber material

such as metal or fiber glass. Thus, an infl_table reentry structure

made from such material might be expected to deform linearly if pres-

surization has stressed the fabric to this el<tent.

Note that, in unloading, the curve deviates significantly from the

loading path in the lower nonlinear range. Fnis deviation occurs even for

fabrics made of linear material. Possible reasons are friction between

fibers and exceeding the elastic limit in th_ fiber straightening process.

In figure 7 is plotted a typical shear stress-strain curve for a

simply woven fabric. It is apparent that, at low strains, shear resist-

ance depends strongly on coating characteristics and on friction between

the fibers. The friction, in turn, depends strongly on the tension in

the fibers. Even for linear fiber material the shear curve is commonly

nonlinear and an effective elastic modulus _ust be assumed for use in a

linear elastic theory. As might be expected, the effective shear modulus

of simply woven fabrics is generally low; a typical value is one-tenth

of the tension modulus as compared with four-tenths for isotropic

engineering metals. However, the shear modulus can be raised to nearly

o
c
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this level simply by adding a bias ply, a second layer of fabric oriented

at 45 ° to the first. Tho upswing at very high shear strains in figure 7

is primarily attributed to bearing pressure between the fibers. For

shear of fabrics, it is common for the unloading curve to depart widely

from the loading curve as shown, apparently as a result of friction

losses.

One more interesting property of fabrics might be mentioned.

Poisson's ratio for a woven fabric sheet is largely associated with the

stresses in one direction bending the fibers in the other. Thus,

Poisson's ratio depends strongly on the weave and the biaxial stress

ratio and some rather unusual values can be obtained_ in fact, values

of Poisson's ratio much higher than i are theoretically possible.

It should be pointed out that, as a result of the longstanding

interest in balloons and nonrigid airships_ there is in existence a

fairly large body of literature on fabric properties in general. How-

ever, data on metal fabrics are lacking.

Dynamic Behavior of Inflatable Structures

In addition to material properties and static structural behavior,

the designer of an inflatable reentry glider must concern himself with

such facets of dynamic structural behavior as vibration modes and fre-

quencies, noise response, and flutter. In order to determine the type

of dynamic behavior to be expected from inflated structures, vibration

tests have been conducted at the Langley Research Center on simple

inflated models. Some results of these tests are shown in figure $.

The upper plot in figure 8 shows typical experimental response

curves of a 60 ° inflated delta-wing model at a given internal pressure.

The structure is tapered airmat and the material is silk cloth with a

latex coating. Measured amplitude is plotted against vibration fre-

quency with both quantities expressed in terms of values at the first

natural frequency. The first mode is found to be a bending mode with

the node line at the root. The amplitude is measured at the tip as

indicated by the letter A on the small sketch. Note that the peak is

relatively sharp with a distinct resonant frequency. The corresponding

value of the structural d_ping coefficient (g = 0.073) is only two to

four times values found fo_ conventional metal structures. The second

mode is a torsion mode with the node line as shown on the sketch. In

this case the amplitude was measured at a point along the leading edge.

Again the resonant frequency is sharply defined and, in fact, the

damping coefficient is 0.045, lower than in the first mode.

Response curves, such as those in the upper plot of figure 8_ were

obtained for both modes at several values of internal pressure. The
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plot at the bottom shows the increase of resonant frequency with internal

pressure for both the first and second modes. The structural damping

coefficients maintained the same order of magnitude at all pressures.

The results in figure 8 are evidence that the dynamic behavior of

inflated fabric wing structures is much like the dynamic behavior of

conventional metal wing structures. Thus, the many dynamic problems

which must be considered in the design of conventional structures may

also be problems for the designer of inflated structures. For example_

flutter analysis probably should be an important part of the design

process for inflatable reentry gliders.

The linear airmat-plate theory presented in the appendix may be

readily adapted for vibration and flutter analysis. Its use in the cal-

culation of natural vibration frequencies is illustrated in figure 9.

The structure considered is the same square airmat plate of nylon

and neoprene discussed previously. The plot in figure 9 gives the low-

est three natural frequencies of this plate as a function of internal

pressure. An indication of corresponding mode shapes is shown by the

small figures in the key. Thus the lowest frequency corresponds to a

single half sine wave in both directions and no node line appears. The

next two mode shapes differ only in the direction of the single node

line. The slight difference in frequency for these two shapes is pri-

marily due to the directional elastic properties of the fabric cover

material. The points are measured values of frequency whereas the curves

were calculated by the use of airmat-plate theory. The agreement is

seen to be reasonably good.

!

o
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CONCLUDING REMARKS

The state of structural design capability for the inflatable reentry

glider can be summarized by the following remerks. In the first place,

it must be pointed out that material development for application to

inflatable reentry vehicles is not yet complete. In particular, more

work is needed on joining techniques and on fabric coatings which will

withstand temperatures up to and, perhaps, sonewhat beyond 1,500 ° F.

From the standpoint of the structural design !rocess_ however_ the

designer has at his disposal simplej but adequate, procedures for the

calculation of buckling and collapse loads on inflatable structures.

He also has available a linear theory for the deflection analysis of

inflatable wing structures. This linear theory can yield reasonably

accurate results in spite of nonlinearities w_ich characterize the

mechanical properties of fabric materials. It can also be adapted for
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vibration and flutter analysis which apparently should be an important

part of the design process. Thus, one might conclude that, while there

is much work yet to be done, the creation of rational design procedures

for inflated reentry vehicles is indeed possible.

L
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Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., April 12, 1960.
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APPENDIX

A LINEARTHEORYFOR"AIRMAn"PLATE

INTRODUCTION

This appendix contains a very brief outline of the derivation of

the linear differential equations and boundary conditions for a rectan-

gular plate of constant-depth "airmat" construction. The basic assump-

tions underlying the theory are mentioned in the paper and listed in

figure 4. The presence of a bulkhead at the edges of the plate is not

explicitly accounted for in the theory. It is assumed_ howeverj that

some mechanism exists along the edges of the plate to keep the internal

air from escaping.

!
k-
C
C_
C

a3b

Ew_E F

G

h

m

Nx3Ny,Nxy

P

q

t

u_vjw

SYMBOLS

dimensions of plate in x- and y-directionsj respectively

Young's modulus in warp directioi_ and fill direction of the

covers_ respectively

modulus of rigidity for cover ma<erial

depth of plate

plate moments and twist associat_d with differences between

stress resultants in top and bc)ttom covers

mass of the plate per unit middl,_ plane area

plate stress resultants associat_d with sums of stress

resultants in top and bottom c)vers

internal press_re

external distributed lateral foal

thickness of each cover

plate displacements_ the average of the displacements in

the top and bottom covers in x-_ y-_ and z-directions 3

respectively
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V

W

x_yjz

_WF' _FW

to the subscript.
to time.

volume of plate

external work

coordinates

angles between drop cords and Z-axis in X,Z and Y,Z planes,
respectively, associated with differences between dis-
placements in top and bottom covers

Poisson's ratios

strain energy in covers

work done against internal pressure

Commapreceding a subscript denotes differentiation with respect
Dots over a symbol denote differentiation with respect

ANALYSIS

The coordinate system is chosen so that the middle plane of the
plate lies in the X,Y plane as shownin the following sketch:

Z

//,-" / /

X Sketch i

Drop cords



12 °

An element is removedfrom the plate and showmin the following sketch:

Nxy

X

Z

Ny
M x

_r

(a) (b)

Sketch 2

The plate stress resultants are shown acting on the element in the posi-

tive senses in sketch 2(a). In sketch 2(b) the plate moments and twist

are shown in the positive senses.

_e theory is developed through an application of the principle

of mimimtm_ potential energy _hich requires

In this expression HC represents the strai::l energy in the covers_

HI represents the work done against the int_rnal pressure due to change

in volume of the plate_ and W represents t]_e potential energy of the

external loads. Since a linear theory is so_ht_ in writing expressions

for HC, HI_ and W_ it is permissible to n,_glect all terms of order

higher than 2 in products of the plate displ{cements_ drop-cord angles_
or their derivatives.

The variation of the strain energy in t!_e covers can be written in

terms of the plate stress resultants and the plate displacements and

drop-cord-angles as follows:
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+ v,x+ w,×W,y]+ Mx5%x+ _ny + M_(_%y + Sn,x)]dxdy

In order to obtain 5HIJ it is necessary to calculate the change

in volume of the plate caused by displacements and drop-cord angles u 3

v, w, _, and 9- This change in volume is obtained by calculating the

final volume of the plate after an arbitrary displacement and subtracting

the initial volume. The volume of the deformed plate is calculated from

the surface integral (see, for example, ref. 2)

V : -f_S z dx dY

where x, y, and z represent the coordinates of points in the deformed

plate surfaces and the surface integral must be evaluated over the six

outside surfaces of the plate. The quantity 5H I is the negative of

the product of the internal pressure and the variation of the increase

in volume. The result is

: J:_bl2.SFa/2_a/2[U'x5]II -pBi'_bl2 h
+ v

2 _2

,y - _w x - _W,y 2 2 + U,xVjy

- U,yV,x+ -£(%x_,y - %y_,x _ dy + J_b/2 la_ ,Y-

I_/_ + Fa/2
- co_,y)I-a/2dy "J-a/2 _-_(col_x d_x

la/2

where the symbol l-a/2 means

tracted from the integrand at

that the integrand at

x = _ etc
2'

a

2
is sub-
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The external-work term includes inertia contributions. The expres-

sion for the variation of the external work is

5W = f b/2 a/2
b/2 _-a/2(qSw- m_Sw- mffSu- mV_v h2 h2 m_5_)_xdy

The indicated variational operation is no_ carried through and

certain terms are integrated by parts. There results from this proce-

dure an integral over the area of the middle s_rface of the plate and

integrals along the edges of the plate. Each term in the area integral

contains one of the following quantities: _u_ 5v_ 5wj _ or 5_.

The coefficients of these five quantities can be set equal to zero

independently by the arguments of the calculus of variations. This pro-

cedure yields the following partial differential equations of equilibrium

for the airmat plate:

: _u (_)
Nx, x + Nxy,y

I

I-_
o
co
o

Ny_y + Nxy,x = mV (A2)

(Nxw,),x + (NyW,y),y+ X),y+ + ph_,x + ph_ y +q=m_

(A3)

h2

M_,x + M_y,y- ph(_+ W,x): -gm_ (A4)

h2 m_My,y+ M_,× - ph(_+ w,y)= _- (AS)

Similar arguments applied to the boundar_ integrals lead to two

sets of boundary conditions. Along x = +
- 2

5u = 0 or Nx - phi + v yj = 0

bv =0

bw = 0

or Nxy + phu y = 0

or NxW,x + NxyW,y 4 ph_ = 0
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8_ = 0 or M x

813 = 0 or Ph3 = 0
Mxy + 1-_ _,Y

Along y = + b_ the conditions are the same as those for x = + a
2 2

except that u and v, _ and _, and x and y are interchanged.

In addition to the differential equations of equilibrium and

boundary conditions for the plate, six stress-strain relations are

required to specify the problem completely. The form of these stress-

strain relations depends on the properties of the cover material. For

example, if the covers are a simply woven fabric (fig. 6) with the X-

and Y-axes assumed, for simplicity, to lie along the warp and fill direc-

tions of the fabric_ the linearized stress-strain relations are

Nx = 2(AllU,x + A12V,y )

Ny= 2(A21u,x + A22V,y )

Nxy--2A33(_y+ V x)

h2

M x = _-(AII_ x + AI2_ y)

h 2

--T( l ,x +

h 2

Mxy- 2 A33(_,y+ _,x)

where

Ewt

All = i - _WF_F W
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PldFEFt

A21 --1 - _w

EFt

A22 = i - _WF_FW

L

1

0

8

0

A33 = Gt

When the inertia terms are neglected, the differential equations

(eqs. (A_I) to (AS)) reduce to

Nxy,yNx, x + = C (A6)

Ny,y + Nxy,x = C
(A7)

NxW,x x + Nx,xW x + Nywjyy + Ny,yW,y

+ Nxy_xW y + ph_ x + ph_ y + q = 0

Mx, x + Mxy,y

My,y + Mxy,x

+ Nxyw,_._y + Nxy,yW,x + NxyW,yx

(A8)

-p_(_+ _,x):o (Ag)

-ph(_+ _y) :o (_o)

Use of the equations (A6) and (A7) reduces ,,quation (A8) to

Nxw,x x + Nyw,yy + 2NxyW,xy + Phlox + ph_,y + q = 0 (All)
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If the plate stresses result from internal pressure alone so that

Nx = Ny = ph and Nxy = 0, the differential equations (Ag), (AI0),

and (All) become

Mx, x + Mxy,y - ph(_ + W,x) = 0 (Al3)

_,y + M_,x-ph(_+ _y) :o

These equations are essentially the governing differential equations

for plates with transverse shear flexibility taken into account. (See 3

for example, ref. 3.) The internal pressure p plays the role of the

modulus in the plate transverse shear stiffness.
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TYPICAL INFLATABLE REENTRY CONFIGURATION

o
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o
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Figure i

SIMPLE STRENGTH ANALYSIS OF AN INFLATED CYLINDER
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TYPICAL SHEAR PROPERTIES OF FABRICS

't-

SHEAR STRAIN

IMPORTANT FACTORS:

COATING CHARACTER I-c:TICS

FRICTLON (TENSION)

Figure 7

VIBRATION CHARACTERISTICS OF 60 ° SILI,-LATEX DELTA WING
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