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THE SMALL OSCILLATIONS OF A KITE. 

BY PROF. G. H . BRYAN, F . R . S . 

I .—INTRODUCTION. 

i . A mathematical investigation of the small oscillations of a kite was pro­
posed in " Stability in Aviation " in the form of a problem (p. 180, problem 16). 
A solution of this problem has been given by Prof. J. M. Bose in the Bulletin of 
the Calcutta Mathematical Society, Vol. I I . , No. I. Unfortunately his investiga­
tion contains many serious errors of a fundamental character, the effect of which 
is to render the solution inapplicable to a system in any way resembling an ordinary 
kite. As examples, the variations in the components of the tension of the kite 
string are assumed to depend on the velocity components instead of on the displace­
ments of the kite, although Prof. Bose's previous equations show the contrary to 
be the case. Again, while in his introduction he considers the case of a kite 
attached by a forked string he contradicts himself by neglecting the displace­
ments of the point of intersection of the str ing with the plane of the kite. 
Further, in §§13, 14, he omits one of the six equations of motion which he has 
just written down. The paper contains other errors as well. 

Mr. Berwick and I carefully examined Prof. Bose's paper, but came to the 
conclusion that nothing short of a complete re-investigation of the equations of 
motion would meet the case. 

The main difficulty which distinguishes the problem of the kite from that of 
the aeroplane is connected with the action of the kite string. If the kite is 
attached by means of a forked string in the form of a Y, the three independent 
axes about which it can rotate without displacing the string are not all concurrent, 
so that even the kinematical conditions would become complicated in the case of 
a general solution. As it is uncertain how far it would be worth while to give 
such a solution the present paper is limited to the consideration of the small 
oscillations of the kite about its position of equilibrium. In this case the expres­
sions for the linear and angular accelerations for fixed and moving axes become 
the same, and, what is more important, the conditions introduced by the forked 
string may be satisfied by treat ing the point of at tachment as being different for 
the longitudinal and lateral oscillations. The simplest plan is then to use a 
different origin and axes in studying the two types of oscillation. 

In this paper the equations are formulated for the general case in which the 
string is of finite length and extensible, and particular modifications occur when 
the string is inextensible and when it is practically infinite in length. Any attempt 
to take into account the weight and therefore also the inertia of the string would 
necessarily introduce the small oscillations of the string itself about its form of 
equilibrium in a catenary, and perhaps the wind resistance on the string would 
also require consideration. It might however be possible to make some more or 
less satisfactory assumption that would represent these effects, for example, 
inertia of the string might be represented by components of tension proportional 
to the accelerations of the point of attachment. 

At the time when " Stability in Aviation " was written it seemed probable 
that it might be necessary to determine the stability coefficients of aeroplanes 
by attaching them to strings, flying them as kites and observing their periods of 
oscillation. The main difficulty is, of course, that the disturbances produced by 
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fluctuations in wind velocity are calculated to render the free oscillations difficult 
of observation. Some preliminary mathematical work was done on the lines of 
the present paper by Prof, (now Lieut.) E. H. Harper, M.A., when my book was 
in preparation, and he obtained biquadratic equations for the oscillations. Ac­
cording to the present investigation the resulting equations may be of the sixth 
degree for longitudinal and of the fifth degree for lateral oscillations. The reason 
for the difference in this respect as compared with the corresponding equations for 
the aeroplane is, generally speaking, that , owing to the action of the string and 
the wind, the kite can only occupy a definite position of equilibrium, whereas the 
equilibrium of the aeroplane is not to the same extent dependent on its position 
in space. 

It is convenient to start with the general case of a dynamical system pos­
sessing no special kind of symmetry, because in this case the equations of motion 
become symmetrical. As soon as considerations of symmetry are applied to a 
dynamical system, the symmetry usually disappears from its equations of motion. 

I have purposely introduced the method of cross multiplication in writing 
down some of the expressions, because I find it of very great use in writing down 
the equations of motion of a rigid body or the six components of a system of 
forces, and it is well tha t anyone who is obliged to make use of these formuk* 
should know of this simple and convenient method of writing them down. 

It has been assumed that the wind is blowing in a horizontal direction. If 
this be not the case, the necessary modifications in the equations should present 
no difficulty. 

II.—GENERAL EQUATIONS OF SMALL OSCILLATION. 

ORIGIN CENTRE OF MASS. 

2. Take axes fixed in the body (the kite) through its centre of mass. Suppose 
the string is attached at a single point, and let the notation be defined as follows :— 

Tension:—x, y, z, co-ordinates of point of attachment. 
Sx, Sy , Sz, components of tension referred to directions which remain, 

fixed in space, s length of string. 

Gravity:—I, m, n, direction cosines of gravity, i.e., of the vertical. 

Air Pressure :—V1, V3, Vit components of the velocity with which the wind 
is blowing against the kite, or algebraically, —U l t —U2, —Us, 
the components in the positive direction of the axes. 

— X, — Y , —Z, — L , —M, —N, forces and couples due to air pres­
sure as in " Stability in Aviation," so that X represents a force in the 
negative direction. 

Displacements:—Let the body receive small displacements. 
£, rj, £, displacements of the centre of gravity. 
u, v, iv, corresponding velocities. 
#u 2̂> 3̂> angular displacements (small) about the axes. 
p, q, r., corresponding angular velocities. 

Inertia Coefficients:—W, weight of kite (say in lbs. weight). 
A, B, C, moments, D, E, F, products of inertia about axes in lbs. x ft.2 

3. Changes in constants due to displacement.—In consequence of the rotation 
of the axes the above vectors representing the components of tension, gravity and 
wind velocity will be altered in the displaced position, and the changes can be 
written down by the method of cross multiplication in the usual way. If a, /3, y, 
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be components of any such vector, the cross multiplication for transforming from 
the old to the new axes stands t h u s : — 

Old 
a /3 y a 
Oi X 93

 X ^3 X 9X 

New 
a 1 = a + /303 — y02 Z?1 = /?. + y « ! — a<?3 7 1 = 7 + a02 — @61 

Thus , for the new components of 

Tension 8x + 63Sy — 02Sz . . . . . (1) 
Gravity W (l + 03m— 0„n) in lbs. weight . . . (2). 
Wind Velocity V1 + 6sV2 — e2V3 (3) 

The variations of the air resistance will thus contain terms in the resistance 
derivatives due to the angular displacement as well as to the velocity components, 
and they assume the form 

X = Xo+(u + 03V2 — 0 2 F 3 )X u + etc. . . . +rXT . . (4) 
N = No+(u + 03V2 — 6„V3)N\ + . . . . +TNT . . (5) 

For the displacement in space of the point of attachment, the rule of cross 
multiplication reads the reverse way. 

0. 0o P, P, 
1 x 2 x 3 x 2 

x y z x 
V = £ — oay + o** v1=i — oxz + e3x l^l — ejB + e.y 

For the moments of the tension about the centre of gravity the rule of cross 
multiplication reads 

Point of application x y z 
Force Sx + 038y — 02Sz

 X Sy + 0,8Z — 038x
 x Sz + 62SX — 0,8, 

Couples , 
{ y(S, + 6aSx — 01ST) W z(Sx + 03Sy — 62Sz) I f x (ST +»& — $&) 1 

j _ g (Sy + 6,8, — 03SX) j\-x(Sz + 02SX — ^ S j l l - y (8X + 03Sy - 028z) j 
• (6 ) 

4. The linear and angular components of the mass accelerations when ex­
pressed in lbs. weight are in the case of small oscillations only. 

^.r du d2£ dv d2n T„ dw d2l 
W^di 0rW-gir;> • W git °rW -g-dW ' W 'gdt W W W (7) 

and 

. A J± p 3A E—~ or A^L- —F ^ — E ^ - . (8) 
gdt gdt gdt gdt2 gdt2 gdt2 ' ' 

and similar expressions for the corresponding couples about the other axes. 
To write doivn the equations of motion it is only necessary to equate the 

following:— 
f Tension component of (1). 

Linear mass acceleration of (7) = -J + gravity component of (2). 
[ — air resistance component of (4). (9) 

Angular mass acceleration of l'8)= / T e n s i o n ™ment o f <6>- . . . 
' ' { — air resistance moment of (5). (10) 

and there would be no advantage in our spelling these equations out in full. 
I t will be observed that these equations necessarily contain the angular displace­
ments 0„ 02, 03, as well as the corresponding velocities p, q, r, and therefore 
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they may be expected in the general case to lead to period equations of higher 
•degree than is the case with the aeroplane. 

III.—ACTION OF THE STRING. 

^ . The character of the oscillations will depend very largely on the mode of 
at tachment of the string and on the manner in which its tension varies when the 
"kite is displaced. 

CASE I.—String weightless and inextensible.—The simplest cases are. those 
:in which the string is assumed to be weightless and inextensible and attached to 
a fixed point F in the ground. In such cases the kite is perfectly free to rotate 
about F , but cannot move in the direction of the string. 

In many kites, moreover, the attachment is forked as shown in the figure. 
In these the following displacements are possible:— 

i. The kite and string may turn about F , its direction of motion being 
perpendicular to O F and either in or perpendicular to the plane of the figure. 
'This gives two possible displacements. 

2. It may turn about an axis through O perpendicular to the plane of the 
.figure, the string remaining at rest. 

3. It may similarly turn about O F . 

4. It may turn about the line AB. 

Let F O produced meet AB in O'. Then it will be seen that when the string 
•OF remains at rest 

O is the centre of rotation for longitudinal displacements, 
O' is the centre for lateral displacements. 

[The kite is, of course, able to turn about any axis through O whatever, but 
unless the three strings OA, OB, O F , remain in one plane the tensions in them 
•cannot be in equilibrium, and such a rotation is statically impossible unless O is 
weighted, which is not supposed the case.] 

It follows that the point of attachment of the string must be taken to be 0 
for longitudinal and 0' for lateral oscillations. 

If 8 is the tension of the string and if the point of attachment undergoes a 
small displacement d1 perpendicular to the string, the length of the string up to 
the point of attachment being s, it is easily seen that the component of the tension 
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tending to bring the kite back again is 8d1/s to the necessary order of approxima-. 
tion. If s is extremely long this component becomes negligible and the equili­
brium becomes neutral for displacements perpendicular to the string. 

6. CASE II.—String extensible.—In this case if the kite is displaced towards. 
F through a distance d2 the tension is changed from 80 to 80 — Ed2/s where E 
is the modulus of elasticity. 

Now it will be seen that in the case of the inextensible string we have the 
geometrical condition d2 = 0, but that the tension S is indeterminate in the dis­
placed position. Thus, it would be necessary to eliminate S from the equations 
of motion by means of this geometrical condition. It is clear that with the centre 
of gravity as origin the equation of moments also becomes very complicated, and 
therefore the work is greatly simplified by taking as origin the point of attachment, 
0 for longitudinal and 0' for lateral oscillations, so that the moment of the tension 
components about the origin vanishes. 

IV.—ORIGIN AT POINT OF ATTACHMENT. 

7. In this case the expressions of § II . will be modified as follows :— 

— x, — y , — z , will now be co-ordinates of the centre of gravity. 
£S V1' Vt displacements of point of contact. 
V1, V2, V3, will be unaltered, but it will be necessary to refer the resistance 

components and resistance derivatives to the new origin. The values of these 
will therefore be entirely different from those of § I I . and will only be deducible 
from them by the formulas of transformation (Stability in Aviation, § 30, and 
corresponding generalisations for space in three dimensions). With this assump­
tion the forms in which the resistance derivatives occur will be the same as in 
§ I I . 

The couples due to the tension will now vanish, but instead we shall have 
couples due to gravity which may be written down by the cross multiplication 
method. 

Point of application — x — y — z 
Force W (I + 63m — 62n) * W(m + 6in — 6,1) X W (n + 62l — 0xm) 

Couples . 'W\z(m + Bln— 02l)—y(n + 62l— 0xm) l and two similar. (11) 

8. Finally the components of mass acceleration of the centre of gravity are 
for small oscillations only. 

™ / d2?1 IJ d20~ z d26„\ T,, / du1 y dr z dq\ , , 
ff(i%-¥-^)°rlF(p+ gdt - g i) etC" (I2)' 
and the corresponding couples due to rotation take the form 

A dp pJq_ _E Jr_ 
gdt gdt gdt 

,r/dwx x da y dp\ , , / dv1 z ds x dr \ 

V y(tt g dt g dt) \ gdt g dt g at J 

which reduce to 

.dp „ , dp _ , dr „, dw1 , , dv1 

A -,. —F —k —E -32 —yM—,-. +zM —j- . . . (13). 
gdt gdt gdt J gdt gdt ° 

where 
A1 = A + M(if + z2) E\=E + Mxz Fl = F+Mxy 
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so that A1, B1, Cl, Dl, E', F1 are the moments and products of inertia about th ^ 
new axes. 

The equations, therefore, now assume the final forms 

W (u + yr — zq)/g = 8X + 6,Sy — 0,8Z + W (I + 63m — 0„n) 
— X0—(u + 63V2 — e2V3)X„—...—rXT . . (14) 

{ A'p — Flq — Eh:+M (z v — yiv) } /g = W { * (m + 0xn — $al) — y (n + 62l — 6 
i m ) > 

— L 0 — (u + 63V2 — e2V3)La— . . . — rLT . . (15) 

V.—LATERAL OSCILLATIONS. 

9. In this case the origin must be taken at 0 1 and the equations can further 
be. simplified by taking the axis of u horizontal, so that we have V2 = 0=V3, 
l = o = n, m=i. Also we may put V1=U where U is the actual velocity of the 
wind. Let /3 be the inclination of the string to the horizon. Putt ing SX = S cos (2-. 
and Sy = Ssin/3, the equations give, with £, du 02, proportional to eH 

WA2 & + xea — y91)iy = —W6l — Zw (A$+ UOJ — A (0^ + 6 ^ 
— ^ / S p + /S((92cos/3 — ^ s i n / 3 ) . . . (16) 

A 2 ( . 4 e i _ ^ 2 _ S M y ) / 3 = W ^ 1 - L w ( A ^ + ^ 1 ) - A ( e i L D + ^ L J (17) 
A3 (/36>2 — F6, + lMx)jg = — Wx61 — Mw (A^+ Udj— A (^1MP + 6JsQ (18) 

If we eliminate #j from the second and third of these equations A occurs as 
a factor of the resulting equation. Dividing out this factor we obtain an equation 
of the fifth degree for the period equation in A. 

10. CASE I .—hi the case of an infinitely long string where S£/s is negligible 
we may put \t1 = w, and the displacement •£ does not occur in the equations by 
itself. In such a case the equilibrium is obviously neutral for displacements 
along the axis of z. The A equation again reduces to the fifth degree, but as the 
eliminant of the second and third equations does not in general now contain A 
as a factor, the equations for A cannot be again reduced in degree. 

For the purpose of studying the oscillations of the kite itself it is, however, 
better to take 8 = (X>> as if it should be necessary it would always be possible to. 
ascertain the effects of shortening the string in the form of small corrections. 
The stability of position dependent on s being finite can be investigated separately 
by neglecting all but first powers of A in the period equation. 

11. CASE II .—In the case of a plane, kite without keels or auxiliary surfaces, 
offering no tangential resistance, if we suppose a to be the. inclination of its plane 
to the horizon, it is clear that Z=0 and L sin a+Af cos a=0 for all displace­
ments, the latter equation representing the fact that no couple can be set up-
tending to rotate the kite in its own plane. 

In this case the equations simplify. For multiplying (2) by sin a, 
(3) by cos a and adding and omitting the terms which vanish in (1) we have the 
two equations 

Wk2(T„ — ye\)jij+W(Xk2l<j+i)ei = S(0!lcosP — 6ismP). . (19) 

A2 {(Aei — F62) sin a + {/36:2 — F6J cos a I /g 

+ W {t>k2/g+ 1) (x cos a — y sin a) fl1 = 0 . . . . . (20) 

These are evidently the equations obtained by resolving and taking moments-
in the plane of the kite. At the same time the equation apparently in A does not 
usually reduce to a lower degree. If, however, there is no lateral displacement 
of the centre of pressure when the wind blows sideways on the kite Lw and Afw. 
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-will vanish, and the terms involving A£ will vanish. In this case X2 will occur 
as a factor of I throughout and dividing by this the equation reduces to a 
biquadratic. 

CASE III.—If the point of attachment is fixed, £ = o and 17, 18 lead to a 
biquadratic in A. 

VI.—LONGITUDINAL OSCILLATIONS. 

12. In this case the origin, in the case of a forked string, must be taken at 
the fork, also it is important to take the axis of x along the direction of the string, 
and its inclination to the horision being fi we have 

Z=sin/?, TO--cos/3, n = o. 
Vl = U cos P, V2 = U sin p where U is the horizontal wind velocity. 

Also £, 6X, 02, and their differential coefficients vanish, and the equations 
become on assuming £, t] and 63 each proportional to ex 

WX2 (£ + y03)/g = SX + 03Sy + W (sinj? + 03 cos /3) 
— X_0 — (A£ — 03UosinP)Xa — (A./ —63Vcos/3)X0 — X03XT . (21) 

W\2 (»; — x03)/g = Sy — 03SX + W (cos/? — 63 sin /?) 
— V^— (A£ + 03 U sin 6) F u — (A17 — 03 U cos 0) YB — A03 Yr . . (22) 

y (sin /3 + 63 cos /3) — a; (cos P — 03smP)} 
~J^—(X^+03U sin P)N,1 — (Xt] — 03U cos P) Na — X03Nr . (23) 

13. The conditions of equilibrium give with SX = S0 and Sy=0 

S0+Wsinp — X0 = 0 . . . (24) 

IF c o s p — yo=0 . . . (25) 

IF (y sin 0 — a: cos/?) — # „ = 0 . . . (26) 

in virtue of which the terms underlined vanish, the constant portion of the tension 
in S being cancelled in consequence. Tak ing the most general case of an extensi­
ble string of finite length we thus obtain 

WX2 (£ + ye3)lg = — (A£ + 03 U sin P)XU — (A»j — U03 cos /?) X, — X03XT 

— E$/s+W03cosp (27) 

WX2(V — x03)/g = —(X^+03UsmP)Yu—(Xr1 — e3UcosP) Y, — X03YT 

— S0 (t)/8 + 03) — M6S sin p (28) 

X*{C03+W(fy-nx)}/g 

= — (X$ + 03 U sin P) N» — (AJ; — 63 U cos /3) A'v — A03IVr 

IF03 (2/cos/8 + a;siny8) (29) 

In the most general cases of an extensible string of finite length these lead 
to a period equation of the sixth degree, but the following modifications occur. 

14. CASE I.—String finite but inextensible.—Here £ = 0 , and we can write 
A S for — E £ / s , where AS is the change in tension due to the small displace­
ments and is small. In this case we must put £ = 0 in the second and third 
equations and these lead to a biquadratic equation for A. 

15. CASE II.—String infinitely long and inextensible.—Here £ = 0 as before, 
but t] does not occur in the second equation without the factor A. Replacing 
A?; by v, X only occurs in the first degree in the terms containing v and the 
resulting equation for A is a cubic. 
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The extraneous solution X=0 depends on the fact that equilibrium is neutral 
for changes of position of the kite in a direction perpendicular to the string. 

If the string is very long the value of A. corresponding to the last mentioned 
solution is very small and hence the stability of position of the kite can be 
investigated approximately by neglecting all powers of X above the first in 
(27), (29) and their eliminants. In this case we may regard the oscillations of 
the kite itself as given to a first approximation by the solution corresponding to 
S = oo> t n e effects of the finite length taking the form of small corrections. 

16. CASE III.—String very extensible.—The opposite case to the last one is 
that in which the string, besides being infinitely long, is very extensible, so that 
the term — E^/s is very small. In this case stability of position is very slight 
for displacements parallel to either axes, and it can, as before, be investigated by 
only retaining the lowest powers of A. in the three equations, while the oscillations 
of the kite proper can now be determined approximately by neglecting both £/s 
and rjjs and putting A,£ = w, Xr\ = v. All three equations have to be used, but 
they involve linear functions of u and v and quadratic functions of 6, hence the 
eliminant is of the fourth degree in X. It is to be observed that in the second 
equation the term So03 is not to be neglected under any circumstances. 

17. CASE .IV.—Point of attachment fixed.—In this case £ = 0 , i]=0; 
equations (27) and (28) determine the tension components at any instant and (29) 
becomes a quadratic equation for the values of A., the osciMations depending only 
on the co-ordinate 03. 

There should now be no difficulty in discussing any further applications that 
may be of interest, such as the conditions of stability. There are, of course, 
other methods of forming the equations of small oscillation, and it will conduce to 
accuracy in such cases if the formulae so obtained are compared and checked 
with the present ones. It will, however, be seen that Prof. Bose's formulae do 
not agree with those of the present investigation, and that his period equations 
are not of the right degree. 

Mr. W . E. H. Berwick has kindly checked the formulae in this paper, and 
it is hoped that they are correct; failing this, that any unintentional slips may 
be discovered and corrected without difficulty. 


