

Guandong High Altitude WindPower Technology Ltd.

广东高空风能技术有限公司

Umbrella ladder based high altitude wind power system

Structure of Working Umbrella

Transmission System

Use planetary gear

Parachute Aerodynamics

Aerodynamic force for parachute has two components: tangential force T (along the axe) and normal force N. Both T and N are proportional to the surface area of the canopy, and the air dynamic pressure q:

$$T = C_T(\alpha) Sq$$

 $N = C_N(\alpha) Sq$

 C_{T} is tangential force coefficient

 $C_{\mbox{\scriptsize N}}$ is normal force coefficient

$$q = \frac{1}{2} \rho V^2$$
 ρ air density, V – relative wind velocity

Moment

$$M = C_M(\alpha) Slq$$

 C_{M} is the moment coefficient

Tangential force coefficient VS Angle of attack a

For imporous canopy, the tangential force coefficient increases as the angle of attack α increases

Wind tunnel result

Normal force coefficient VS Angle of attack a

$$C_{N}/C_{T} < 0.01$$

The required lifting force to keep an opened umbrella's angle of attack constant is very small compared with the polling force it generates

Wind Tunnel Result

Moment coefficient VS Angle of attack a and system stability

If parachute is in equilibrium state, the condition for it to be stable state is:

when α increases C_M decreases $(dC_M / d\alpha \quad \langle \ 0 \)$

-25° \langle a \langle 25° , equilibrium state not stable, parachute will oscillate

But if $\alpha > 25^{\circ}$, the equilibrium state is stable.

We always keep the working umbrella's angle of attack larger then 30° . The system is very stable

Wind Tunnel Result

Power Generation

When the working umbrella is opened and traveling up, the mechanical power it generates is

$$P = (T_O - mg \sin \alpha) V_{UP}$$

$$T_O -- \text{ the tangential force when umbrella is opened} V_{UP} -- \text{ is the umbrella's velocity}$$

This mechanical power is transferred to the transmission system and electricity is generated

When the working umbrella is closed and pulling down, the electricity power it consumes is

$$P = (T_C - mg sin \ \alpha \) \ V_{DOWN} \qquad \begin{array}{l} T_C \ \text{-- the tangential force when umbrella is closed} \\ V_{DOWN} \ \text{-- is the umbrella's velocity} \end{array}$$

Total work for the whole cycle $W = (T_O - T_C) L L$ -- traveling distance

For the system with four groups

Control: at any time, the working umbrellas of three groups are traveling up, one is traveling Down

The total mechanical power transferred to the transmission system is constant at any time

$$P_{TOTAL} = 3 (T_O - mg \sin \alpha) V_{UP}$$

So the electricity output from the generator is constant

Equation of Motion for Parachute-Air System

The general form of the equation is:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial V} \right) + \Omega \times \left(\frac{\partial T}{\partial V} \right) = F$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \Omega} \right) + \Omega \times \left(\frac{\partial T}{\partial \Omega} \right) + V \times \left(\frac{\partial T}{\partial V} \right) = M$$

After applying appropriate apparent mass tensor, the motion of equation appears as follow:

$$F = \begin{bmatrix} (m + \alpha_{11})(\dot{u} - vr) + (m + \alpha_{33})wq + (K + \alpha_{15})(\dot{q} + rp) \\ (m + \alpha_{11})(\dot{v} + ur) - (m + \alpha_{33})wp - (K + \alpha_{15})(\dot{p} - qr) \\ (m + \alpha_{33})\dot{w} - (m + \alpha_{11})(uq - vp) - (K + \alpha_{15})(p^2 + q^2) \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} (I_{xx} + \alpha_{44})\dot{p} - (K + \alpha_{15})(\dot{v} - wp + ur) - (I_{yy} + \alpha_{44} - I_{zz} - \alpha_{66})qr + (\alpha_{33} - \alpha_{11})vw \\ (I_{yy} + \alpha_{44})\dot{q} + (K + \alpha_{15})(\dot{u} + wq - vr) + (I_{yy} + \alpha_{44} - I_{zz} - \alpha_{66})pr - (\alpha_{33} - \alpha_{11})uw \\ (I_{zz} + \alpha_{66})\dot{r} + (I_{yy} - I_{xx})pq \end{bmatrix}$$

Where I is inertia tensor, α is apparent mass tensor.

F is the combined force, including T, N, polling force P of the string and G: F = T + N + P + G M is the moment.

With this equation we can calculate the steady state and the motion of the working umbrella

Advantage of the umbrella ladder based system

Simple

During power generation only the working umbrellas traveling up and down along the guide rope, the control is relatively simple and easy to implemented

Stable

Except the working umbrellas all the other air parts are in static states, as long as the working umbrella's angle of attack is large, the system is very stable

Scalable

The system capacity can be increased by adding new group of umbrella ladder

Innovative

This is a new technology invented by our company and protected by patent law.