Still tests today with the same wing of 1.3 m², more in-depth because I no longer had the sun in my eyes. I added the fact of walking in the direction of the wind to represent the reel-out yo-yo phase, without noticing any particular difference except by a decrease in the expected traction.
The preceding observations are confirmed while being qualified by the following observations.
The kite seemed to descend more slowly with small loops generating little traction. But I cannot give a valid reason, having observed different things in the descents of the initial kite according to the tests, and sometimes no descent (because of a thermal lift?).
The initial kite was a Peter Lynn Vibe of 0.6 or 0.7 m² and 120 cm wingspan flat. Loops of 3 m in diameter should correspond to loops of 4.5 m in diameter for the kite of 1.3 m² and 180 cm wingspan flat which is an Ozone 1.5. As the Ozone lines are only 18 m instead of the 25 m for the Vibe, the larger kite (Ozone) was also closer. So there may be some error in my assessment: after all 4.5 m is not that far from the 5 or 6 m that I indicated previously.
And even if the loop is 5 or 6 m in diameter it is still narrower than a small figure of eight.
What I like about the loop, apart from saving space (without being huge), is the regularity of traction. In fact, the kite remains equidistant from the point of traction in the raised center of the flight window, unlike what happens with a figure of eight.
All this remains to be roughed up and tested with kites of different sizes and aerodynamic characteristics, and different winds.