Low radius loop

There are various kite power simulators now available as stand alone open source software or MATLAB simulations. You can likely program an altitude maintaining near-circular flight path into these simulators and be fed line tension parameters as output… Any experts on the packages available available?

1 Like

Pierre: I’m not convinced that even if you had some free (zero cost) source of “pull”, on the ground, that “reeling” would form an economical electricity-generation solution.

Doug,
My purpose is the maximization of the space. Preliminary experiments about low radius loop with a wing show that it is possible to generate the same power by using far less space, using also some passive steering as autorotation.
Among AWES that has been tested only two systems produce 10 kW or more at several hundreds meters in height: flygen and yoyo methods.

So you’re making so much power now, the only thing holding you back is you’ve used all the available space?

1 Like

I admit that was funny. Though the discussion is worthwhile

I have two old paragliders. I don’t still know if they can generate 10 kW or more by staying in the room, perhaps yes if I open all the windows…

1 Like

http://twingtec.ch/ Twingtec (using yoyo method) flies by large loops, perhaps 10x wingspan. The same for Makani (using flygen method) as shown on their document.FAAfromMakani.pdf (3.5 MB)

1 Like

Low radius may also apply in figure-eight. Some arrangement for a kite-farm where kites fly in figure-eight can allow a better maximization of the space use. I may describe how in a further topic.

On the video at 1’10" from the beginning we can remark the fast turn of 25 stacked kites What kite plans do you like?.
Increasing the power by keeping a low radius turn could be interesting for AWES.

2 stacked kites would be a beginning of a possible High lift coefficient and biplane kite in a flexible kite version.

1 Like

What this stack of flexifoils shows is how weak the kites are when crowded together, the high pressure wanted under a kite cancelled by the low pressure over a kite below. That’s why one skinny guy can fly them all, and they fly very slowly compared to a single flexi, which helps the pilot manage. An old heuristic is to space kites in a power stack at least 3 Wing Spans apart, and there is still considerable loss of power. A properly staggered multiwing has a different (trailing) geometry than a (vertical) stack, and even then may not beat one good kite matched to conditions. That this stack may do a low-radius loop does not offset the other losses.

3 Likes

Thanks for some interesting input on the distance between kites heuristic. Would it be safe to extend the heuristic to a looping kite, such that wind must travel 3x the wingspan og the kite between every loop? In that case this could be a rule of thumb to design minimum flying radius for a given wing and windspeed…

1 Like

3 x wingspan is also roughly the diameter of the loop during my experiment on Low radius loop and


If the loop diameter is lower, so only 2 x wingspan, there is more loss due to the no speed of the chord toward the center, in a similar way as a classical wind rotor.

If the loop diameter is higher, from 4 x wingspan and more, the benefit of the higher swept area is annulated due to both the higher variation of power by the variations of the cosine, and a lesser power far from the central zone of the flight window.

No, in principle an Archimedes Screw is effective (at low Re), and the stacking heuristic is mostly independent of wind velocity factor you introduce (that ranges toward high Re).

There is an optimal proportion to drogue apex holes, as an annular sweep analogue, if one is seeking Betz disc efficiency. Wingtip is traded for hub area.

Reminds me of the early ship propeller development. They moved away from an archimedes screw very quickly.

Yes, ship screws operate at high Re, so long screw is not preferred. The odd fact is a long screw turbine in an open flow can develop more power along its axial-depth than the Betz disc assumption allows, by entraining flow all along itself.

Other close real cases are high solidity rotors like irrigation wind turbines and stealth submarine propellers, where they have not “moved away” from the form.

Note: I will now desist from posting in Rod’s favor, as he seems to think I posted improperly on the reeling topic, but I don’t see the error.

1 Like

A low radius loop allows an implementation of a far larger kite for the same tether length. And as the first experiments show an equivalent power that obtained by large crosswind figures as envisaged usually, the potential of power density increases.

Let us summarize data.
I measured again the wing area for 0.6 m² (not 0.7 m²). The diameter of the loop was about 3 times the kite span (1.2 m).
The traction was 40 N with 4 m/s wind speed. In yoyo mode that leads to a power of 23.7 W. This value is deduced from 40 (N) X 1.33 (reel-out speed) X 4/9 (loss of traction due to loss of apparent wind).

Now, assuming the tether length is 1 km, a similar kite of 120 m span would lead to a power of 3.7 MW with a wind speed of 10 m/s. As it would work by yoyo mode, the power would be between 2 and 3 MW by taking account of the time and the consumed energy during reel-in phase. And a kite of 240 m span would multiply the power by 4.

Now is it possible to build a soft or semi-rigid kite of 240 m span? See
https://www.copybook.com/companies/airborne-systems/articles/worlds-largest-autonomously-guided-ramair-parachute (60 m span) and https://airborne-sys.com/wp-content/uploads/2016/08/ASG-DragonFly-20170206-English.pdf (33 m span for only 230 kg).

And with a tether length of 2 km the potential is multiplied.

As it is a yoyo system, several unities (2 or 3 or 4, not more) would be required in order to use the gap to manage a more regular energy.

Among Dave’s videos wsikfwing (the second) represents a profile flying by autoration under a lifting kite.

I see two advantages by using a low radius loop: using less space (numerous times less than the usual figure-eight for an almost equivalent power) leading to using a far larger kite; then producing a relatively smooth force. A tether of 20 m length (like on the video) as the reel-in phase is starting, at 30° elevation angle, can allow a radius loop of about 15 m, so a soft kite of 5 m span and about 10 m², producing a force of about 4160 N at 10 m/s wind speed, leading to a power of 6160 W. Now with the same proportions (a soft kite of 250 m span and so on) and by using a tether of 1000 m, the force would be about 10 800 000 N, leading to a power of 16 MW. It’s acceptable.

Kite Networks enable the closest practical spacing of low-radius loops. For example, Rod’s Daisy Networks are comprised of low-radius looping wing groups (unit-daisy) set closely together under a lenticular mesh lifting layer.

Low radius loops minimize power bypass inside loops, and kite networks minimize bypass between loops, to allow aggregation of the largest number of loops possible, within a given airspace and land footprint.

1 Like

What could be the Kite Network arrangement replacing my example of a single (too huge) wing of 250 m sweeping a loop of 750 m diameter? A single ring with numerous wings-blades sweeping the same? Numerous smallers rings? Please could you provide a sketch?